
INTRODUCTION

Traditional numerical approaches for solving a PDE, 
such as the Runge-Kutta methods, are not suitable 
for quantum settings because they do not 
numerically preserve the probability (sum of the 
squared modulus of the wave function):

quantum mechanics should always be one.

To preserve the probability, we should turn to other 
algorithms, such as the Chebyshev algorithm and the 
Trotter-Suzuki algorithm. The accelerator is based on 
the Trotter-Suzuki algorithm [1], in which the 
transformation matrix from t=0 to t=Δt has a 
determinant of one, meaning that it is a proper 
rotation matrix and will not alter the squared 
modulus of the vector it is acting on.

Schrodinger Equation Accelerator on 
PYNQ via HLS

This hardware design has employed several hardware 
acceleration techniques to reduce the latency and the 
initiation interval (II).

The hardware implementation (1.84s) of a 2-D 
quantum wave packet passing through an aperture is 
200+ times faster than the software (524.4s)
implementation. The hardware acceleration 
techniques have helped reduce the initiation interval 
to one clock cycle, meaning a fully pipelined dataflow. 
As shown below, it only takes about 100M clock cycles 
to perform 2000 evolutions. 

D
E
S
I
G
N

C
R
E
A
T
I
V
E

R
E
S
U
L
T

OpenHW2022

On board test by PYNQ-Z2

Haifei Wang
Wuhan University, Hubei

[1] De Raedt, Hans. "Computer simulation of quantum 
phenomena in nanoscale devices." Annual Reviews of 
Computational Physics IV (1996): 107-146.

A 2-D quantum wave packet passing through an aperture[2] ug1399 > HLS Programmers Guide > Interface of the HLS design >
Defining Interfaces > AXI Adatper Interfaces Protocol > AXI4 Master Interface > M_AXI Bundles

Latency, interval and resource utilization

∫ " !#$

(1) Distributed ROM
ROM is relatively easy to replicate the storage because it 
only reads. The Vitis HLS tool will perform this optimization 
for an array that is initialized at the beginning and never 
modified after. Wherever the array is needed, a ROM will 
be synthesized, reducing the path length.
(2) Removing self-dependency
Many algorithms have to accumulate the data, however, on 
the hardware level, the next data can get into accumulation 
only after the last accumulation is finished. It is possible to 
avoid such self-dependency and increase the throughput by 
alternating the logic of the C++ code (e.g., loop interchange).
(3) Adding read ports for BRAMs
It is possible to split one large BRAM into several smaller 
BRAMs, increasing the number of read ports to get more 
data in a single clock cycle.

Also, it is useful to bundle different array arguments (with AXI4 
Master interface) to different AXI4 ports if they are both 
accessed in one loop. This is because, by default, array 
arguments are mapped to a single interface bundle that only 
allows one read and one write in a clock cycle [2].

Removing self-dependency (left) and adding read ports (right)Principle of Trotter-Suzuki algorithm


